SentinelBERT - Multi-Platform Sentiment & Behavioral Pattern Analysis System
Executive Summary
SentinelBERT is a comprehensive social media intelligence platform designed for law enforcement and security agencies to monitor, analyze, and understand sentiment patterns and behavioral trends across multiple social media platforms. The system provides real-time ingestion, advanced NLP analysis using BERT, and intuitive visualization dashboards for investigative purposes.
1. High-Level System Architecture
Architecture Overview
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β SENTINELBERT SYSTEM β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β
β βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ β
β β Data Sources β β Ingestion β β Processing β β
β β β β Pipeline β β Pipeline β β
β β β’ X.com API βββββΆβ βββββΆβ β β
β β β’ Instagram API β β β’ Rust ETL β β β’ Python BERT β β
β β β’ Reddit API β β β’ Rate Limiting β β β’ Sentiment β β
β β β’ Other APIs β β β’ Data Cleaning β β β’ Behavioral β β
β βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ β
β β β β
β βΌ βΌ β
β βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ β
β β Frontend β β Backend β β Storage β β
β β Dashboard β β Services β β Layer β β
β β ββββββ βββββΆβ β β
β β β’ React/Flutter β β β’ Spring Boot β β β’ PostgreSQL β β
β β β’ Timeline View β β β’ REST APIs β β β’ ElasticSearch β β
β β β’ Analytics β β β’ Orchestration β β β’ Redis Cache β β
β β β’ Region Filter β β β’ Auth Service β β β’ File Storage β β
β βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ β
β β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Data Flow Architecture
Data Sources β Rust Ingestion β Message Queue β Python NLP β Storage β Spring Boot API β Frontend
β β β β β β β
β β β β β β β
APIs Rate Limiting Apache Kafka BERT Model PostgreSQL REST APIs Dashboard
Scrapers Data Cleaning Redis Queue Sentiment ElasticSearch GraphQL Timeline
Webhooks Validation Pub/Sub Behavioral File Store WebSocket Analytics
Core Components
- Data Ingestion Layer (Rust)
- High-performance concurrent data collection
- API rate limiting and retry mechanisms
- Real-time data streaming and buffering
-
Data validation and normalization
-
Processing Layer (Python + BERT)
- Sentiment analysis using fine-tuned BERT models
- Behavioral pattern detection algorithms
- User influence scoring
-
Content virality analysis
-
Storage Layer
- PostgreSQL for structured data and relationships
- ElasticSearch for full-text search and analytics
- Redis for caching and session management
-
Object storage for media files
-
Backend Services (Spring Boot)
- RESTful API orchestration
- Authentication and authorization
- Query processing and optimization
-
Real-time notifications
-
Frontend Dashboard (React/Flutter)
- Interactive timeline visualizations
- Real-time analytics dashboards
- Geographic filtering and mapping
- User and content analysis tools
2. Detailed Query Workflow
User Query Journey
βββββββββββββββββββ
β 1. User Input β
β β’ Keywords β
β β’ Hashtags β
β β’ Date Range β
β β’ Platforms β
β β’ Regions β
βββββββββββ¬ββββββββ
β
βΌ
βββββββββββββββββββ
β 2. Frontend β
β β’ Validation β
β β’ Query Builder β
β β’ UI State β
βββββββββββ¬ββββββββ
β
βΌ
βββββββββββββββββββ
β 3. Spring Boot β
β β’ Auth Check β
β β’ Query Parse β
β β’ Route Request β
βββββββββββ¬ββββββββ
β
βΌ
βββββββββββββββββββ
β 4. Data Query β
β β’ ElasticSearch β
β β’ PostgreSQL β
β β’ Cache Check β
βββββββββββ¬ββββββββ
β
βΌ
βββββββββββββββββββ
β 5. NLP Analysis β
β β’ BERT Scoring β
β β’ Pattern Detectβ
β β’ Influence Calcβ
βββββββββββ¬ββββββββ
β
βΌ
βββββββββββββββββββ
β 6. Aggregation β
β β’ Timeline Buildβ
β β’ Stats Compute β
β β’ Ranking β
βββββββββββ¬ββββββββ
β
βΌ
βββββββββββββββββββ
β 7. Response β
β β’ JSON Format β
β β’ Visualization β
β β’ Export Optionsβ
βββββββββββββββββββ
Detailed Workflow Steps
Step 1: User Input Processing - Frontend validates input parameters - Query builder constructs structured search criteria - Real-time suggestions for keywords and hashtags
Step 2: Authentication & Authorization - JWT token validation - Role-based access control (RBAC) - Audit logging of all queries
Step 3: Query Optimization - Query parsing and optimization - Cache lookup for similar recent queries - Load balancing across processing nodes
Step 4: Data Retrieval - ElasticSearch for full-text content search - PostgreSQL for user relationships and metadata - Parallel query execution for performance
Step 5: NLP Analysis Pipeline - BERT sentiment scoring (positive/negative/neutral) - Behavioral pattern classification - User influence and reach calculations - Content virality scoring
Step 6: Result Aggregation - Chronological timeline construction - Geographic and demographic aggregation - Statistical analysis and trend identification - Influencer ranking and network analysis
Step 7: Response Formatting - JSON API response with structured data - Real-time WebSocket updates for live data - Export capabilities (PDF, CSV, JSON)
3. Technology Stack
Data Ingestion Layer (Rust)
// Core Libraries
tokio = "1.0" // Async runtime
reqwest = "0.11" // HTTP client
serde = "1.0" // Serialization
sqlx = "0.7" // Database driver
redis = "0.23" // Redis client
kafka = "0.8" // Kafka producer
tracing = "0.1" // Logging
Key Components: - Tokio: Asynchronous runtime for high-concurrency - Reqwest: HTTP client for API calls with retry logic - SQLx: Type-safe database interactions - Redis: Message queuing and caching - Apache Kafka: Event streaming platform
NLP Processing Layer (Python)
# Core ML Libraries
transformers==4.35.0 # Hugging Face BERT models
torch==2.1.0 # PyTorch framework
scikit-learn==1.3.0 # ML utilities
pandas==2.1.0 # Data manipulation
numpy==1.24.0 # Numerical computing
# Infrastructure
celery==5.3.0 # Task queue
redis==5.0.0 # Message broker
psycopg2==2.9.0 # PostgreSQL driver
elasticsearch==8.10.0 # Search engine client
Key Components: - Transformers: Pre-trained BERT models and fine-tuning - PyTorch: Deep learning framework - Celery: Distributed task processing - Scikit-learn: Traditional ML algorithms
Backend Services (Spring Boot - Java)
<!-- Core Spring Dependencies -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-websocket</artifactId>
</dependency>
Key Components: - Spring Security: Authentication and authorization - Spring Data JPA: Database abstraction - Spring WebSocket: Real-time communication - Spring Cloud Gateway: API gateway and routing
Storage Layer
# PostgreSQL Configuration
postgresql:
version: "15"
extensions:
- postgis # Geographic data
- pg_trgm # Text similarity
- btree_gin # Indexing
# ElasticSearch Configuration
elasticsearch:
version: "8.10"
plugins:
- analysis-icu # International text analysis
- mapper-size # Document size tracking
# Redis Configuration
redis:
version: "7.2"
modules:
- RedisJSON # JSON document storage
- RedisGraph # Graph database
Frontend Layer (React)
{
"dependencies": {
"react": "^18.2.0",
"react-router-dom": "^6.8.0",
"@mui/material": "^5.11.0",
"recharts": "^2.5.0",
"leaflet": "^1.9.0",
"socket.io-client": "^4.6.0",
"axios": "^1.3.0",
"date-fns": "^2.29.0"
}
}
Key Components: - Material-UI: Component library for consistent design - Recharts: Data visualization and charting - Leaflet: Interactive maps for geographic data - Socket.IO: Real-time data updates
4. Backend Design
Microservices Architecture
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β SPRING BOOT ECOSYSTEM β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β Gateway β β Auth β β Query β β
β β Service β β Service β β Service β β
β β β β β β β β
β β β’ Routing β β β’ JWT β β β’ Search β β
β β β’ Load Bal β β β’ RBAC β β β’ Filter β β
β β β’ Rate Lmt β β β’ Audit β β β’ Aggregate β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β Analytics β β User β β Notificationβ β
β β Service β β Service β β Service β β
β β β β β β β β
β β β’ Timeline β β β’ Profiles β β β’ Alerts β β
β β β’ Trends β β β’ Prefs β β β’ WebSocket β β
β β β’ Reports β β β’ History β β β’ Email β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
API Design
REST API Endpoints:
// Query Controller
@RestController
@RequestMapping("/api/v1/queries")
public class QueryController {
@PostMapping("/search")
public ResponseEntity<SearchResults> searchContent(
@RequestBody SearchRequest request,
@AuthenticationPrincipal UserDetails user
) {
// Implementation
}
@GetMapping("/timeline/{queryId}")
public ResponseEntity<Timeline> getTimeline(
@PathVariable String queryId,
@RequestParam(defaultValue = "0") int page
) {
// Implementation
}
@GetMapping("/influencers/{queryId}")
public ResponseEntity<List<Influencer>> getInfluencers(
@PathVariable String queryId,
@RequestParam(defaultValue = "10") int limit
) {
// Implementation
}
}
// Analytics Controller
@RestController
@RequestMapping("/api/v1/analytics")
public class AnalyticsController {
@GetMapping("/sentiment/{queryId}")
public ResponseEntity<SentimentAnalysis> getSentimentAnalysis(
@PathVariable String queryId,
@RequestParam String timeframe
) {
// Implementation
}
@GetMapping("/trends/{queryId}")
public ResponseEntity<TrendAnalysis> getTrendAnalysis(
@PathVariable String queryId
) {
// Implementation
}
}
Data Models
Core Entities:
// Social Media Post Entity
@Entity
@Table(name = "social_posts")
public class SocialPost {
@Id
private String id;
@Column(nullable = false)
private String platform;
@Column(nullable = false)
private String content;
@Column(name = "author_id")
private String authorId;
@Column(name = "created_at")
private LocalDateTime createdAt;
@Column(name = "engagement_score")
private Double engagementScore;
@Column(name = "sentiment_score")
private Double sentimentScore;
@Column(name = "behavioral_patterns")
@Convert(converter = JsonConverter.class)
private List<String> behavioralPatterns;
@Column(name = "geographic_data")
@Convert(converter = JsonConverter.class)
private GeographicData geographicData;
// Getters, setters, constructors
}
// User Profile Entity
@Entity
@Table(name = "user_profiles")
public class UserProfile {
@Id
private String id;
@Column(nullable = false)
private String platform;
@Column(name = "username")
private String username;
@Column(name = "display_name")
private String displayName;
@Column(name = "follower_count")
private Long followerCount;
@Column(name = "influence_score")
private Double influenceScore;
@Column(name = "verification_status")
private Boolean verificationStatus;
@Column(name = "account_created")
private LocalDateTime accountCreated;
// Getters, setters, constructors
}
// Query History Entity
@Entity
@Table(name = "query_history")
public class QueryHistory {
@Id
private String id;
@Column(name = "user_id")
private String userId;
@Column(name = "query_params")
@Convert(converter = JsonConverter.class)
private QueryParameters queryParams;
@Column(name = "created_at")
private LocalDateTime createdAt;
@Column(name = "result_count")
private Long resultCount;
@Column(name = "execution_time")
private Long executionTime;
// Getters, setters, constructors
}
Database Schema
PostgreSQL Schema:
-- Social Posts Table
CREATE TABLE social_posts (
id VARCHAR(255) PRIMARY KEY,
platform VARCHAR(50) NOT NULL,
content TEXT NOT NULL,
author_id VARCHAR(255) NOT NULL,
created_at TIMESTAMP NOT NULL,
engagement_score DECIMAL(10,4),
sentiment_score DECIMAL(5,4),
behavioral_patterns JSONB,
geographic_data JSONB,
indexed_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
INDEX idx_platform_created (platform, created_at),
INDEX idx_author_id (author_id),
INDEX idx_sentiment_score (sentiment_score),
INDEX idx_geographic_data USING GIN (geographic_data)
);
-- User Profiles Table
CREATE TABLE user_profiles (
id VARCHAR(255) PRIMARY KEY,
platform VARCHAR(50) NOT NULL,
username VARCHAR(255) NOT NULL,
display_name VARCHAR(255),
follower_count BIGINT DEFAULT 0,
influence_score DECIMAL(10,4),
verification_status BOOLEAN DEFAULT FALSE,
account_created TIMESTAMP,
last_updated TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
UNIQUE INDEX idx_platform_username (platform, username),
INDEX idx_influence_score (influence_score DESC),
INDEX idx_follower_count (follower_count DESC)
);
-- Query History Table
CREATE TABLE query_history (
id VARCHAR(255) PRIMARY KEY,
user_id VARCHAR(255) NOT NULL,
query_params JSONB NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
result_count BIGINT,
execution_time BIGINT,
INDEX idx_user_id_created (user_id, created_at DESC),
INDEX idx_query_params USING GIN (query_params)
);
ElasticSearch Mapping:
{
"mappings": {
"properties": {
"id": {"type": "keyword"},
"platform": {"type": "keyword"},
"content": {
"type": "text",
"analyzer": "standard",
"fields": {
"keyword": {"type": "keyword"}
}
},
"author_id": {"type": "keyword"},
"created_at": {"type": "date"},
"engagement_score": {"type": "float"},
"sentiment_score": {"type": "float"},
"behavioral_patterns": {"type": "keyword"},
"geographic_data": {
"properties": {
"location": {"type": "geo_point"},
"country": {"type": "keyword"},
"region": {"type": "keyword"}
}
},
"hashtags": {"type": "keyword"},
"mentions": {"type": "keyword"}
}
}
}
5. ML/NLP Design
BERT Fine-tuning Strategy
Model Architecture:
import torch
import torch.nn as nn
from transformers import BertModel, BertTokenizer
class SentinelBERTModel(nn.Module):
def __init__(self, bert_model_name='bert-base-uncased', num_classes=3):
super(SentinelBERTModel, self).__init__()
# Load pre-trained BERT
self.bert = BertModel.from_pretrained(bert_model_name)
# Freeze early layers, fine-tune later layers
for param in self.bert.encoder.layer[:8].parameters():
param.requires_grad = False
# Classification heads
self.sentiment_classifier = nn.Sequential(
nn.Dropout(0.3),
nn.Linear(self.bert.config.hidden_size, 256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, num_classes) # positive, negative, neutral
)
# Behavioral pattern classifier
self.behavior_classifier = nn.Sequential(
nn.Dropout(0.3),
nn.Linear(self.bert.config.hidden_size, 512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, 10) # 10 behavioral patterns
)
# Influence score regressor
self.influence_regressor = nn.Sequential(
nn.Dropout(0.3),
nn.Linear(self.bert.config.hidden_size, 128),
nn.ReLU(),
nn.Linear(128, 1)
)
def forward(self, input_ids, attention_mask):
# Get BERT embeddings
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
pooled_output = outputs.pooler_output
# Multi-task outputs
sentiment_logits = self.sentiment_classifier(pooled_output)
behavior_logits = self.behavior_classifier(pooled_output)
influence_score = self.influence_regressor(pooled_output)
return {
'sentiment': sentiment_logits,
'behavior': behavior_logits,
'influence': influence_score
}
Training Pipeline:
class SentinelBERTTrainer:
def __init__(self, model, train_loader, val_loader, device):
self.model = model.to(device)
self.train_loader = train_loader
self.val_loader = val_loader
self.device = device
# Multi-task loss functions
self.sentiment_criterion = nn.CrossEntropyLoss()
self.behavior_criterion = nn.BCEWithLogitsLoss()
self.influence_criterion = nn.MSELoss()
# Optimizer with different learning rates
self.optimizer = torch.optim.AdamW([
{'params': self.model.bert.parameters(), 'lr': 2e-5},
{'params': self.model.sentiment_classifier.parameters(), 'lr': 1e-4},
{'params': self.model.behavior_classifier.parameters(), 'lr': 1e-4},
{'params': self.model.influence_regressor.parameters(), 'lr': 1e-4}
])
# Learning rate scheduler
self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
self.optimizer, T_max=100
)
def train_epoch(self):
self.model.train()
total_loss = 0
for batch in self.train_loader:
input_ids = batch['input_ids'].to(self.device)
attention_mask = batch['attention_mask'].to(self.device)
sentiment_labels = batch['sentiment'].to(self.device)
behavior_labels = batch['behavior'].to(self.device)
influence_labels = batch['influence'].to(self.device)
self.optimizer.zero_grad()
outputs = self.model(input_ids, attention_mask)
# Multi-task loss calculation
sentiment_loss = self.sentiment_criterion(
outputs['sentiment'], sentiment_labels
)
behavior_loss = self.behavior_criterion(
outputs['behavior'], behavior_labels
)
influence_loss = self.influence_criterion(
outputs['influence'].squeeze(), influence_labels
)
# Weighted combination of losses
total_batch_loss = (
0.4 * sentiment_loss +
0.4 * behavior_loss +
0.2 * influence_loss
)
total_batch_loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.optimizer.step()
total_loss += total_batch_loss.item()
self.scheduler.step()
return total_loss / len(self.train_loader)
Behavioral Pattern Detection
Pattern Categories:
BEHAVIORAL_PATTERNS = {
'AMPLIFICATION': {
'description': 'Rapid sharing/retweeting behavior',
'indicators': ['high_retweet_ratio', 'short_time_intervals', 'minimal_original_content']
},
'COORDINATION': {
'description': 'Synchronized posting patterns',
'indicators': ['similar_timing', 'identical_hashtags', 'cross_platform_sync']
},
'ASTROTURFING': {
'description': 'Artificial grassroots movement',
'indicators': ['new_accounts', 'generic_profiles', 'repetitive_messaging']
},
'POLARIZATION': {
'description': 'Extreme sentiment expression',
'indicators': ['high_sentiment_scores', 'divisive_language', 'us_vs_them_framing']
},
'MISINFORMATION': {
'description': 'Spreading unverified information',
'indicators': ['lack_of_sources', 'sensational_claims', 'rapid_viral_spread']
}
}
class BehavioralPatternAnalyzer:
def __init__(self):
self.pattern_detectors = {
'amplification': AmplificationDetector(),
'coordination': CoordinationDetector(),
'astroturfing': AstroturfingDetector(),
'polarization': PolarizationDetector(),
'misinformation': MisinformationDetector()
}
def analyze_user_behavior(self, user_posts, user_profile):
patterns = {}
for pattern_name, detector in self.pattern_detectors.items():
score = detector.calculate_score(user_posts, user_profile)
patterns[pattern_name] = {
'score': score,
'confidence': detector.get_confidence(score),
'indicators': detector.get_indicators(user_posts, user_profile)
}
return patterns
def detect_network_patterns(self, user_network):
# Analyze patterns across user networks
network_patterns = {}
# Coordination detection across users
coordination_score = self._detect_coordination(user_network)
network_patterns['coordination'] = coordination_score
# Amplification network analysis
amplification_network = self._analyze_amplification_network(user_network)
network_patterns['amplification_network'] = amplification_network
return network_patterns
Model Serving Strategy
Model Deployment Architecture:
# FastAPI Model Server
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import torch
import asyncio
from typing import List, Dict
app = FastAPI(title="SentinelBERT Model Server")
class PredictionRequest(BaseModel):
texts: List[str]
user_metadata: Dict = None
class PredictionResponse(BaseModel):
predictions: List[Dict]
processing_time: float
class ModelServer:
def __init__(self):
self.model = None
self.tokenizer = None
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.load_model()
def load_model(self):
"""Load the fine-tuned SentinelBERT model"""
self.model = SentinelBERTModel.from_pretrained('models/sentinelbert-v1')
self.model.to(self.device)
self.model.eval()
self.tokenizer = BertTokenizer.from_pretrained('models/sentinelbert-v1')
async def predict_batch(self, texts: List[str]) -> List[Dict]:
"""Batch prediction for multiple texts"""
# Tokenize inputs
encoded = self.tokenizer(
texts,
padding=True,
truncation=True,
max_length=512,
return_tensors='pt'
)
input_ids = encoded['input_ids'].to(self.device)
attention_mask = encoded['attention_mask'].to(self.device)
# Model inference
with torch.no_grad():
outputs = self.model(input_ids, attention_mask)
# Process outputs
predictions = []
for i in range(len(texts)):
sentiment_probs = torch.softmax(outputs['sentiment'][i], dim=0)
behavior_probs = torch.sigmoid(outputs['behavior'][i])
influence_score = outputs['influence'][i].item()
predictions.append({
'sentiment': {
'positive': sentiment_probs[2].item(),
'negative': sentiment_probs[0].item(),
'neutral': sentiment_probs[1].item()
},
'behavioral_patterns': behavior_probs.tolist(),
'influence_score': influence_score
})
return predictions
# Global model server instance
model_server = ModelServer()
@app.post("/predict", response_model=PredictionResponse)
async def predict(request: PredictionRequest):
start_time = time.time()
try:
predictions = await model_server.predict_batch(request.texts)
processing_time = time.time() - start_time
return PredictionResponse(
predictions=predictions,
processing_time=processing_time
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
return {"status": "healthy", "model_loaded": model_server.model is not None}
Model Versioning and A/B Testing:
class ModelManager:
def __init__(self):
self.models = {}
self.current_version = "v1"
self.ab_test_config = {}
def load_model_version(self, version: str, model_path: str):
"""Load a specific model version"""
self.models[version] = SentinelBERTModel.from_pretrained(model_path)
self.models[version].eval()
def set_ab_test(self, test_name: str, version_a: str, version_b: str, traffic_split: float):
"""Configure A/B test between model versions"""
self.ab_test_config[test_name] = {
'version_a': version_a,
'version_b': version_b,
'traffic_split': traffic_split
}
def get_model_for_request(self, request_id: str, test_name: str = None):
"""Get appropriate model version for request"""
if test_name and test_name in self.ab_test_config:
config = self.ab_test_config[test_name]
# Simple hash-based traffic splitting
if hash(request_id) % 100 < config['traffic_split'] * 100:
return self.models[config['version_a']]
else:
return self.models[config['version_b']]
return self.models[self.current_version]
6. Frontend Design
Dashboard Architecture
Component Hierarchy:
SentinelBERT App
βββ Authentication
β βββ Login Component
β βββ Role-based Access
β βββ Session Management
βββ Main Dashboard
β βββ Search Interface
β β βββ Keyword Input
β β βββ Platform Selector
β β βββ Date Range Picker
β β βββ Region Filter
β βββ Results Display
β β βββ Timeline View
β β βββ Analytics Panel
β β βββ Influencer List
β β βββ Content Grid
β βββ Export Tools
βββ Admin Panel
βββ User Management
βββ System Monitoring
βββ Model Configuration
Key UI Components
1. Search Interface:
import React, { useState, useCallback } from 'react';
import {
TextField,
Chip,
Select,
DatePicker,
Button,
Autocomplete
} from '@mui/material';
const SearchInterface = ({ onSearch, loading }) => {
const [searchParams, setSearchParams] = useState({
keywords: [],
hashtags: [],
platforms: ['twitter', 'instagram', 'reddit'],
dateRange: { start: null, end: null },
regions: [],
sentimentFilter: 'all'
});
const handleSearch = useCallback(() => {
onSearch(searchParams);
}, [searchParams, onSearch]);
return (
<div className="search-interface">
<div className="search-row">
<Autocomplete
multiple
freeSolo
options={[]}
value={searchParams.keywords}
onChange={(_, newValue) =>
setSearchParams(prev => ({ ...prev, keywords: newValue }))
}
renderInput={(params) => (
<TextField
{...params}
label="Keywords"
placeholder="Enter keywords..."
variant="outlined"
/>
)}
renderTags={(value, getTagProps) =>
value.map((option, index) => (
<Chip
variant="outlined"
label={option}
{...getTagProps({ index })}
key={index}
/>
))
}
/>
</div>
<div className="search-row">
<Select
multiple
value={searchParams.platforms}
onChange={(e) =>
setSearchParams(prev => ({ ...prev, platforms: e.target.value }))
}
label="Platforms"
>
<MenuItem value="twitter">X.com</MenuItem>
<MenuItem value="instagram">Instagram</MenuItem>
<MenuItem value="reddit">Reddit</MenuItem>
<MenuItem value="facebook">Facebook</MenuItem>
</Select>
<DatePicker
label="Start Date"
value={searchParams.dateRange.start}
onChange={(date) =>
setSearchParams(prev => ({
...prev,
dateRange: { ...prev.dateRange, start: date }
}))
}
/>
<DatePicker
label="End Date"
value={searchParams.dateRange.end}
onChange={(date) =>
setSearchParams(prev => ({
...prev,
dateRange: { ...prev.dateRange, end: date }
}))
}
/>
</div>
<Button
variant="contained"
onClick={handleSearch}
disabled={loading}
size="large"
>
{loading ? 'Searching...' : 'Search'}
</Button>
</div>
);
};
2. Timeline Visualization:
import React, { useMemo } from 'react';
import {
LineChart,
Line,
XAxis,
YAxis,
CartesianGrid,
Tooltip,
Legend,
ResponsiveContainer,
AreaChart,
Area
} from 'recharts';
const TimelineView = ({ data, selectedMetrics }) => {
const chartData = useMemo(() => {
return data.timeline.map(point => ({
timestamp: new Date(point.timestamp).toLocaleDateString(),
postCount: point.post_count,
sentimentScore: point.avg_sentiment,
engagementScore: point.avg_engagement,
influenceScore: point.total_influence
}));
}, [data]);
return (
<div className="timeline-view">
<div className="timeline-header">
<h3>Content Timeline</h3>
<div className="metric-toggles">
{['postCount', 'sentimentScore', 'engagementScore'].map(metric => (
<Chip
key={metric}
label={metric}
clickable
color={selectedMetrics.includes(metric) ? 'primary' : 'default'}
onClick={() => toggleMetric(metric)}
/>
))}
</div>
</div>
<ResponsiveContainer width="100%" height={400}>
<LineChart data={chartData}>
<CartesianGrid strokeDasharray="3 3" />
<XAxis dataKey="timestamp" />
<YAxis />
<Tooltip />
<Legend />
{selectedMetrics.includes('postCount') && (
<Line
type="monotone"
dataKey="postCount"
stroke="#8884d8"
strokeWidth={2}
name="Post Count"
/>
)}
{selectedMetrics.includes('sentimentScore') && (
<Line
type="monotone"
dataKey="sentimentScore"
stroke="#82ca9d"
strokeWidth={2}
name="Sentiment Score"
/>
)}
{selectedMetrics.includes('engagementScore') && (
<Line
type="monotone"
dataKey="engagementScore"
stroke="#ffc658"
strokeWidth={2}
name="Engagement Score"
/>
)}
</LineChart>
</ResponsiveContainer>
<div className="timeline-insights">
<div className="insight-card">
<h4>Peak Activity</h4>
<p>{data.insights.peak_time}</p>
</div>
<div className="insight-card">
<h4>Trend Direction</h4>
<p>{data.insights.trend_direction}</p>
</div>
<div className="insight-card">
<h4>Viral Threshold</h4>
<p>{data.insights.viral_threshold}</p>
</div>
</div>
</div>
);
};
3. Influencer Analysis Panel:
import React from 'react';
import {
Table,
TableBody,
TableCell,
TableContainer,
TableHead,
TableRow,
Avatar,
Chip,
LinearProgress,
IconButton
} from '@mui/material';
import { Visibility, Share, Flag } from '@mui/icons-material';
const InfluencerPanel = ({ influencers, onViewProfile, onFlag }) => {
return (
<div className="influencer-panel">
<div className="panel-header">
<h3>Key Influencers</h3>
<div className="sort-controls">
<Select value="influence" onChange={handleSortChange}>
<MenuItem value="influence">Influence Score</MenuItem>
<MenuItem value="reach">Reach</MenuItem>
<MenuItem value="engagement">Engagement</MenuItem>
</Select>
</div>
</div>
<TableContainer>
<Table>
<TableHead>
<TableRow>
<TableCell>User</TableCell>
<TableCell>Platform</TableCell>
<TableCell>Influence Score</TableCell>
<TableCell>Reach</TableCell>
<TableCell>Sentiment</TableCell>
<TableCell>Behavioral Patterns</TableCell>
<TableCell>Actions</TableCell>
</TableRow>
</TableHead>
<TableBody>
{influencers.map((influencer) => (
<TableRow key={influencer.id}>
<TableCell>
<div className="user-cell">
<Avatar src={influencer.avatar} />
<div>
<div className="username">{influencer.username}</div>
<div className="display-name">{influencer.displayName}</div>
</div>
</div>
</TableCell>
<TableCell>
<Chip
label={influencer.platform}
size="small"
color="primary"
/>
</TableCell>
<TableCell>
<div className="score-cell">
<LinearProgress
variant="determinate"
value={influencer.influenceScore * 100}
className="score-bar"
/>
<span>{(influencer.influenceScore * 100).toFixed(1)}%</span>
</div>
</TableCell>
<TableCell>
{influencer.reach.toLocaleString()}
</TableCell>
<TableCell>
<Chip
label={influencer.dominantSentiment}
color={getSentimentColor(influencer.dominantSentiment)}
size="small"
/>
</TableCell>
<TableCell>
<div className="patterns-cell">
{influencer.behavioralPatterns.slice(0, 2).map(pattern => (
<Chip
key={pattern}
label={pattern}
size="small"
variant="outlined"
/>
))}
{influencer.behavioralPatterns.length > 2 && (
<span>+{influencer.behavioralPatterns.length - 2}</span>
)}
</div>
</TableCell>
<TableCell>
<IconButton onClick={() => onViewProfile(influencer.id)}>
<Visibility />
</IconButton>
<IconButton>
<Share />
</IconButton>
<IconButton onClick={() => onFlag(influencer.id)}>
<Flag />
</IconButton>
</TableCell>
</TableRow>
))}
</TableBody>
</Table>
</TableContainer>
</div>
);
};
4. Geographic Analysis:
import React, { useEffect, useRef } from 'react';
import L from 'leaflet';
import 'leaflet/dist/leaflet.css';
const GeographicMap = ({ data, onRegionSelect }) => {
const mapRef = useRef(null);
const mapInstanceRef = useRef(null);
useEffect(() => {
if (!mapInstanceRef.current) {
// Initialize map
mapInstanceRef.current = L.map(mapRef.current).setView([40.7128, -74.0060], 4);
// Add tile layer
L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
attribution: 'Β© OpenStreetMap contributors'
}).addTo(mapInstanceRef.current);
}
// Clear existing markers
mapInstanceRef.current.eachLayer((layer) => {
if (layer instanceof L.Marker) {
mapInstanceRef.current.removeLayer(layer);
}
});
// Add new markers
data.regions.forEach(region => {
const marker = L.marker([region.lat, region.lng])
.addTo(mapInstanceRef.current)
.bindPopup(`
<div class="map-popup">
<h4>${region.name}</h4>
<p>Posts: ${region.postCount}</p>
<p>Avg Sentiment: ${region.avgSentiment.toFixed(2)}</p>
<p>Top Keywords: ${region.topKeywords.join(', ')}</p>
</div>
`);
marker.on('click', () => onRegionSelect(region));
});
}, [data, onRegionSelect]);
return (
<div className="geographic-map">
<div className="map-header">
<h3>Geographic Distribution</h3>
<div className="map-controls">
<Select value="sentiment" onChange={handleMetricChange}>
<MenuItem value="sentiment">Sentiment</MenuItem>
<MenuItem value="volume">Volume</MenuItem>
<MenuItem value="engagement">Engagement</MenuItem>
</Select>
</div>
</div>
<div ref={mapRef} className="map-container" style={{ height: '400px' }} />
</div>
);
};
Real-time Updates
WebSocket Integration:
import React, { useEffect, useState } from 'react';
import io from 'socket.io-client';
const RealTimeUpdates = ({ queryId, onUpdate }) => {
const [socket, setSocket] = useState(null);
const [connectionStatus, setConnectionStatus] = useState('disconnected');
useEffect(() => {
// Initialize WebSocket connection
const newSocket = io(process.env.REACT_APP_WEBSOCKET_URL, {
auth: {
token: localStorage.getItem('authToken')
}
});
newSocket.on('connect', () => {
setConnectionStatus('connected');
// Subscribe to query updates
newSocket.emit('subscribe', { queryId });
});
newSocket.on('disconnect', () => {
setConnectionStatus('disconnected');
});
newSocket.on('query_update', (data) => {
onUpdate(data);
});
newSocket.on('new_content', (content) => {
// Handle new content matching the query
onUpdate({ type: 'new_content', data: content });
});
newSocket.on('sentiment_update', (sentimentData) => {
// Handle sentiment analysis updates
onUpdate({ type: 'sentiment_update', data: sentimentData });
});
setSocket(newSocket);
return () => {
newSocket.close();
};
}, [queryId, onUpdate]);
return (
<div className="real-time-status">
<div className={`status-indicator ${connectionStatus}`}>
{connectionStatus === 'connected' ? 'π’' : 'π΄'} Live Updates
</div>
</div>
);
};
7. Deployment Plan
Containerization Strategy
Docker Configuration:
# Rust Ingestion Service
FROM rust:1.70 as builder
WORKDIR /app
COPY Cargo.toml Cargo.lock ./
COPY src ./src
RUN cargo build --release
FROM debian:bullseye-slim
RUN apt-get update && apt-get install -y \
ca-certificates \
&& rm -rf /var/lib/apt/lists/*
COPY --from=builder /app/target/release/sentinel-ingestion /usr/local/bin/
EXPOSE 8080
CMD ["sentinel-ingestion"]
# Python NLP Service
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
EXPOSE 8000
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
# Spring Boot Backend
FROM openjdk:17-jdk-slim
WORKDIR /app
COPY target/sentinel-backend-*.jar app.jar
EXPOSE 8080
CMD ["java", "-jar", "app.jar"]
# React Frontend
FROM node:18-alpine as build
WORKDIR /app
COPY package*.json ./
RUN npm ci
COPY . .
RUN npm run build
FROM nginx:alpine
COPY --from=build /app/build /usr/share/nginx/html
COPY nginx.conf /etc/nginx/nginx.conf
EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]
Docker Compose for Development:
version: '3.8'
services:
# Database Services
postgres:
image: postgres:15
environment:
POSTGRES_DB: sentinelbert
POSTGRES_USER: sentinel
POSTGRES_PASSWORD: ${POSTGRES_PASSWORD}
volumes:
- postgres_data:/var/lib/postgresql/data
- ./init.sql:/docker-entrypoint-initdb.d/init.sql
ports:
- "5432:5432"
elasticsearch:
image: elasticsearch:8.10.0
environment:
- discovery.type=single-node
- xpack.security.enabled=false
- "ES_JAVA_OPTS=-Xms2g -Xmx2g"
volumes:
- elasticsearch_data:/usr/share/elasticsearch/data
ports:
- "9200:9200"
redis:
image: redis:7.2-alpine
ports:
- "6379:6379"
volumes:
- redis_data:/data
# Message Queue
kafka:
image: confluentinc/cp-kafka:latest
environment:
KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://localhost:9092
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
ports:
- "9092:9092"
depends_on:
- zookeeper
zookeeper:
image: confluentinc/cp-zookeeper:latest
environment:
ZOOKEEPER_CLIENT_PORT: 2181
ZOOKEEPER_TICK_TIME: 2000
ports:
- "2181:2181"
# Application Services
ingestion-service:
build:
context: ./services/ingestion
dockerfile: Dockerfile
environment:
- DATABASE_URL=postgresql://sentinel:${POSTGRES_PASSWORD}@postgres:5432/sentinelbert
- REDIS_URL=redis://redis:6379
- KAFKA_BROKERS=kafka:9092
depends_on:
- postgres
- redis
- kafka
ports:
- "8081:8080"
nlp-service:
build:
context: ./services/nlp
dockerfile: Dockerfile
environment:
- MODEL_PATH=/app/models
- REDIS_URL=redis://redis:6379
volumes:
- ./models:/app/models
depends_on:
- redis
ports:
- "8000:8000"
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
backend-service:
build:
context: ./services/backend
dockerfile: Dockerfile
environment:
- SPRING_DATASOURCE_URL=jdbc:postgresql://postgres:5432/sentinelbert
- SPRING_DATASOURCE_USERNAME=sentinel
- SPRING_DATASOURCE_PASSWORD=${POSTGRES_PASSWORD}
- SPRING_REDIS_HOST=redis
- ELASTICSEARCH_HOST=elasticsearch
depends_on:
- postgres
- elasticsearch
- redis
ports:
- "8080:8080"
frontend:
build:
context: ./frontend
dockerfile: Dockerfile
environment:
- REACT_APP_API_URL=http://localhost:8080
- REACT_APP_WEBSOCKET_URL=ws://localhost:8080
ports:
- "3000:80"
depends_on:
- backend-service
volumes:
postgres_data:
elasticsearch_data:
redis_data:
Kubernetes Deployment
Kubernetes Manifests:
# Namespace
apiVersion: v1
kind: Namespace
metadata:
name: sentinelbert
---
# ConfigMap
apiVersion: v1
kind: ConfigMap
metadata:
name: sentinelbert-config
namespace: sentinelbert
data:
postgres-host: "postgres-service"
elasticsearch-host: "elasticsearch-service"
redis-host: "redis-service"
kafka-brokers: "kafka-service:9092"
---
# PostgreSQL Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: postgres
namespace: sentinelbert
spec:
replicas: 1
selector:
matchLabels:
app: postgres
template:
metadata:
labels:
app: postgres
spec:
containers:
- name: postgres
image: postgres:15
env:
- name: POSTGRES_DB
value: "sentinelbert"
- name: POSTGRES_USER
value: "sentinel"
- name: POSTGRES_PASSWORD
valueFrom:
secretKeyRef:
name: postgres-secret
key: password
ports:
- containerPort: 5432
volumeMounts:
- name: postgres-storage
mountPath: /var/lib/postgresql/data
volumes:
- name: postgres-storage
persistentVolumeClaim:
claimName: postgres-pvc
---
# Ingestion Service Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: ingestion-service
namespace: sentinelbert
spec:
replicas: 3
selector:
matchLabels:
app: ingestion-service
template:
metadata:
labels:
app: ingestion-service
spec:
containers:
- name: ingestion
image: sentinelbert/ingestion:latest
env:
- name: DATABASE_URL
value: "postgresql://sentinel:$(POSTGRES_PASSWORD)@postgres-service:5432/sentinelbert"
- name: POSTGRES_PASSWORD
valueFrom:
secretKeyRef:
name: postgres-secret
key: password
- name: REDIS_URL
value: "redis://redis-service:6379"
- name: KAFKA_BROKERS
value: "kafka-service:9092"
ports:
- containerPort: 8080
resources:
requests:
memory: "512Mi"
cpu: "500m"
limits:
memory: "1Gi"
cpu: "1000m"
---
# NLP Service Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: nlp-service
namespace: sentinelbert
spec:
replicas: 2
selector:
matchLabels:
app: nlp-service
template:
metadata:
labels:
app: nlp-service
spec:
containers:
- name: nlp
image: sentinelbert/nlp:latest
env:
- name: MODEL_PATH
value: "/app/models"
- name: REDIS_URL
value: "redis://redis-service:6379"
ports:
- containerPort: 8000
resources:
requests:
memory: "4Gi"
cpu: "2000m"
nvidia.com/gpu: 1
limits:
memory: "8Gi"
cpu: "4000m"
nvidia.com/gpu: 1
volumeMounts:
- name: model-storage
mountPath: /app/models
volumes:
- name: model-storage
persistentVolumeClaim:
claimName: model-pvc
---
# Backend Service Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: backend-service
namespace: sentinelbert
spec:
replicas: 3
selector:
matchLabels:
app: backend-service
template:
metadata:
labels:
app: backend-service
spec:
containers:
- name: backend
image: sentinelbert/backend:latest
env:
- name: SPRING_DATASOURCE_URL
value: "jdbc:postgresql://postgres-service:5432/sentinelbert"
- name: SPRING_DATASOURCE_USERNAME
value: "sentinel"
- name: SPRING_DATASOURCE_PASSWORD
valueFrom:
secretKeyRef:
name: postgres-secret
key: password
- name: SPRING_REDIS_HOST
value: "redis-service"
- name: ELASTICSEARCH_HOST
value: "elasticsearch-service"
ports:
- containerPort: 8080
resources:
requests:
memory: "1Gi"
cpu: "500m"
limits:
memory: "2Gi"
cpu: "1000m"
---
# Ingress Configuration
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: sentinelbert-ingress
namespace: sentinelbert
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
cert-manager.io/cluster-issuer: "letsencrypt-prod"
spec:
tls:
- hosts:
- sentinelbert.example.com
secretName: sentinelbert-tls
rules:
- host: sentinelbert.example.com
http:
paths:
- path: /api
pathType: Prefix
backend:
service:
name: backend-service
port:
number: 8080
- path: /
pathType: Prefix
backend:
service:
name: frontend-service
port:
number: 80
CI/CD Pipeline
GitHub Actions Workflow:
name: SentinelBERT CI/CD
on:
push:
branches: [ main, develop ]
pull_request:
branches: [ main ]
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}
jobs:
test:
runs-on: ubuntu-latest
services:
postgres:
image: postgres:15
env:
POSTGRES_PASSWORD: postgres
POSTGRES_DB: test_db
options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5
ports:
- 5432:5432
steps:
- uses: actions/checkout@v3
- name: Set up Rust
uses: actions-rs/toolchain@v1
with:
toolchain: stable
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.11'
- name: Set up Java
uses: actions/setup-java@v3
with:
java-version: '17'
distribution: 'temurin'
- name: Set up Node.js
uses: actions/setup-node@v3
with:
node-version: '18'
# Rust Tests
- name: Run Rust tests
working-directory: ./services/ingestion
run: |
cargo test
# Python Tests
- name: Install Python dependencies
working-directory: ./services/nlp
run: |
pip install -r requirements.txt
pip install pytest pytest-cov
- name: Run Python tests
working-directory: ./services/nlp
run: |
pytest --cov=. --cov-report=xml
# Java Tests
- name: Run Java tests
working-directory: ./services/backend
run: |
./mvnw test
# Frontend Tests
- name: Install Node dependencies
working-directory: ./frontend
run: npm ci
- name: Run Frontend tests
working-directory: ./frontend
run: npm test -- --coverage --watchAll=false
build-and-push:
needs: test
runs-on: ubuntu-latest
if: github.ref == 'refs/heads/main'
strategy:
matrix:
service: [ingestion, nlp, backend, frontend]
steps:
- uses: actions/checkout@v3
- name: Log in to Container Registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}/${{ matrix.service }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: ./services/${{ matrix.service }}
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
deploy:
needs: build-and-push
runs-on: ubuntu-latest
if: github.ref == 'refs/heads/main'
steps:
- uses: actions/checkout@v3
- name: Set up kubectl
uses: azure/setup-kubectl@v3
with:
version: 'v1.28.0'
- name: Configure kubectl
run: |
echo "${{ secrets.KUBE_CONFIG }}" | base64 -d > kubeconfig
export KUBECONFIG=kubeconfig
- name: Deploy to Kubernetes
run: |
kubectl apply -f k8s/
kubectl rollout restart deployment/ingestion-service -n sentinelbert
kubectl rollout restart deployment/nlp-service -n sentinelbert
kubectl rollout restart deployment/backend-service -n sentinelbert
kubectl rollout restart deployment/frontend -n sentinelbert
- name: Verify deployment
run: |
kubectl rollout status deployment/ingestion-service -n sentinelbert
kubectl rollout status deployment/nlp-service -n sentinelbert
kubectl rollout status deployment/backend-service -n sentinelbert
kubectl rollout status deployment/frontend -n sentinelbert
8. Security & Privacy Measures
Authentication & Authorization
Multi-layered Security Architecture:
@Configuration
@EnableWebSecurity
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class SecurityConfig {
@Autowired
private JwtAuthenticationEntryPoint jwtAuthenticationEntryPoint;
@Autowired
private JwtRequestFilter jwtRequestFilter;
@Bean
public PasswordEncoder passwordEncoder() {
return new BCryptPasswordEncoder(12);
}
@Bean
public AuthenticationManager authenticationManager(
AuthenticationConfiguration config) throws Exception {
return config.getAuthenticationManager();
}
@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
http.csrf().disable()
.authorizeHttpRequests(authz -> authz
.requestMatchers("/api/auth/**").permitAll()
.requestMatchers("/api/admin/**").hasRole("ADMIN")
.requestMatchers("/api/analyst/**").hasAnyRole("ANALYST", "ADMIN")
.requestMatchers("/api/viewer/**").hasAnyRole("VIEWER", "ANALYST", "ADMIN")
.anyRequest().authenticated()
)
.exceptionHandling().authenticationEntryPoint(jwtAuthenticationEntryPoint)
.and()
.sessionManagement().sessionCreationPolicy(SessionCreationPolicy.STATELESS);
http.addFilterBefore(jwtRequestFilter, UsernamePasswordAuthenticationFilter.class);
// Additional security headers
http.headers(headers -> headers
.frameOptions().deny()
.contentTypeOptions().and()
.httpStrictTransportSecurity(hstsConfig -> hstsConfig
.maxAgeInSeconds(31536000)
.includeSubdomains(true)
)
);
return http.build();
}
}
// Role-based Access Control
@Entity
@Table(name = "users")
public class User {
@Id
private String id;
@Column(unique = true, nullable = false)
private String username;
@Column(nullable = false)
private String passwordHash;
@Enumerated(EnumType.STRING)
private Role role;
@Column(name = "department")
private String department;
@Column(name = "clearance_level")
private Integer clearanceLevel;
@Column(name = "last_login")
private LocalDateTime lastLogin;
@Column(name = "failed_login_attempts")
private Integer failedLoginAttempts;
@Column(name = "account_locked")
private Boolean accountLocked;
// Getters, setters, constructors
}
public enum Role {
VIEWER("Can view search results and basic analytics"),
ANALYST("Can perform advanced searches and export data"),
ADMIN("Full system access including user management"),
SUPER_ADMIN("System administration and configuration");
private final String description;
Role(String description) {
this.description = description;
}
}
Data Encryption & Privacy
Encryption Strategy:
@Service
public class EncryptionService {
private final AESUtil aesUtil;
private final RSAUtil rsaUtil;
// Field-level encryption for sensitive data
@EventListener
public void handlePrePersist(PrePersistEvent event) {
Object entity = event.getEntity();
if (entity instanceof SocialPost) {
SocialPost post = (SocialPost) entity;
// Encrypt PII data
if (post.getAuthorEmail() != null) {
post.setAuthorEmail(aesUtil.encrypt(post.getAuthorEmail()));
}
// Hash user identifiers
if (post.getAuthorId() != null) {
post.setAuthorIdHash(hashUserId(post.getAuthorId()));
post.setAuthorId(null); // Remove original ID
}
}
}
// Data anonymization for analytics
public AnonymizedPost anonymizePost(SocialPost post) {
return AnonymizedPost.builder()
.id(generateAnonymousId(post.getId()))
.content(sanitizeContent(post.getContent()))
.timestamp(post.getCreatedAt())
.platform(post.getPlatform())
.sentimentScore(post.getSentimentScore())
.geographicRegion(generalizeLocation(post.getGeographicData()))
.build();
}
private String hashUserId(String userId) {
return DigestUtils.sha256Hex(userId + getSystemSalt());
}
private String sanitizeContent(String content) {
// Remove or mask PII from content
return content
.replaceAll("\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Z|a-z]{2,}\\b", "[EMAIL]")
.replaceAll("\\b\\d{3}-\\d{2}-\\d{4}\\b", "[SSN]")
.replaceAll("\\b\\d{3}-\\d{3}-\\d{4}\\b", "[PHONE]");
}
}
// Database encryption configuration
@Configuration
public class DatabaseEncryptionConfig {
@Bean
public AttributeConverter<String, String> stringEncryptor() {
return new StringEncryptor();
}
@Converter
public static class StringEncryptor implements AttributeConverter<String, String> {
private final AESUtil aesUtil = new AESUtil();
@Override
public String convertToDatabaseColumn(String attribute) {
if (attribute == null) return null;
return aesUtil.encrypt(attribute);
}
@Override
public String convertToEntityAttribute(String dbData) {
if (dbData == null) return null;
return aesUtil.decrypt(dbData);
}
}
}
Audit Logging & Compliance
Comprehensive Audit System:
@Entity
@Table(name = "audit_logs")
public class AuditLog {
@Id
private String id;
@Column(name = "user_id", nullable = false)
private String userId;
@Column(name = "action", nullable = false)
private String action;
@Column(name = "resource_type")
private String resourceType;
@Column(name = "resource_id")
private String resourceId;
@Column(name = "timestamp", nullable = false)
private LocalDateTime timestamp;
@Column(name = "ip_address")
private String ipAddress;
@Column(name = "user_agent")
private String userAgent;
@Column(name = "request_details")
@Convert(converter = JsonConverter.class)
private Map<String, Object> requestDetails;
@Column(name = "result")
private String result; // SUCCESS, FAILURE, UNAUTHORIZED
// Getters, setters, constructors
}
@Component
@Aspect
public class AuditAspect {
@Autowired
private AuditService auditService;
@Around("@annotation(Auditable)")
public Object auditMethod(ProceedingJoinPoint joinPoint) throws Throwable {
Auditable auditable = getAuditableAnnotation(joinPoint);
String userId = getCurrentUserId();
String action = auditable.action();
String resourceType = auditable.resourceType();
AuditLog auditLog = AuditLog.builder()
.userId(userId)
.action(action)
.resourceType(resourceType)
.timestamp(LocalDateTime.now())
.ipAddress(getCurrentUserIP())
.userAgent(getCurrentUserAgent())
.build();
try {
Object result = joinPoint.proceed();
auditLog.setResult("SUCCESS");
auditLog.setRequestDetails(extractRequestDetails(joinPoint.getArgs()));
return result;
} catch (Exception e) {
auditLog.setResult("FAILURE");
auditLog.setRequestDetails(Map.of("error", e.getMessage()));
throw e;
} finally {
auditService.logAudit(auditLog);
}
}
}
// Usage example
@RestController
public class QueryController {
@PostMapping("/search")
@Auditable(action = "SEARCH_QUERY", resourceType = "SOCIAL_POSTS")
public ResponseEntity<SearchResults> searchContent(@RequestBody SearchRequest request) {
// Implementation
}
@GetMapping("/export/{queryId}")
@Auditable(action = "DATA_EXPORT", resourceType = "QUERY_RESULTS")
public ResponseEntity<byte[]> exportResults(@PathVariable String queryId) {
// Implementation
}
}
Network Security & API Protection
API Security Configuration:
@Configuration
public class ApiSecurityConfig {
// Rate limiting
@Bean
public RedisRateLimiter rateLimiter() {
return new RedisRateLimiter(10, 20, 1); // 10 requests per second, burst of 20
}
// API key validation
@Component
public class ApiKeyFilter implements Filter {
@Override
public void doFilter(ServletRequest request, ServletResponse response,
FilterChain chain) throws IOException, ServletException {
HttpServletRequest httpRequest = (HttpServletRequest) request;
String apiKey = httpRequest.getHeader("X-API-Key");
if (isPublicEndpoint(httpRequest.getRequestURI())) {
chain.doFilter(request, response);
return;
}
if (!isValidApiKey(apiKey)) {
HttpServletResponse httpResponse = (HttpServletResponse) response;
httpResponse.setStatus(HttpStatus.UNAUTHORIZED.value());
return;
}
chain.doFilter(request, response);
}
private boolean isValidApiKey(String apiKey) {
// Validate API key against database
return apiKeyService.validateKey(apiKey);
}
}
// Input validation and sanitization
@ControllerAdvice
public class InputValidationAdvice {
@InitBinder
public void initBinder(WebDataBinder binder) {
binder.registerCustomEditor(String.class, new StringTrimmerEditor(true));
binder.addValidators(new XSSValidator());
}
}
public class XSSValidator implements Validator {
private final Pattern[] xssPatterns = {
Pattern.compile("<script>(.*?)</script>", Pattern.CASE_INSENSITIVE),
Pattern.compile("src[\r\n]*=[\r\n]*\\\'(.*?)\\\'", Pattern.CASE_INSENSITIVE),
Pattern.compile("javascript:", Pattern.CASE_INSENSITIVE),
Pattern.compile("vbscript:", Pattern.CASE_INSENSITIVE)
};
@Override
public boolean supports(Class<?> clazz) {
return String.class.equals(clazz);
}
@Override
public void validate(Object target, Errors errors) {
String input = (String) target;
if (input != null) {
for (Pattern pattern : xssPatterns) {
if (pattern.matcher(input).find()) {
errors.reject("xss.detected", "Potential XSS attack detected");
break;
}
}
}
}
}
}
Data Retention & Privacy Compliance
GDPR/Privacy Compliance:
@Service
public class DataRetentionService {
@Scheduled(cron = "0 0 2 * * ?") // Daily at 2 AM
public void enforceDataRetention() {
// Delete old social posts (configurable retention period)
LocalDateTime cutoffDate = LocalDateTime.now().minusDays(getRetentionDays());
List<SocialPost> expiredPosts = socialPostRepository
.findByCreatedAtBefore(cutoffDate);
for (SocialPost post : expiredPosts) {
// Archive to cold storage before deletion
archiveService.archivePost(post);
// Delete from active database
socialPostRepository.delete(post);
// Log retention action
auditService.logDataRetention(post.getId(), "DELETED_EXPIRED");
}
// Anonymize old user data
anonymizeOldUserData(cutoffDate);
// Clean up temporary files
cleanupTempFiles();
}
@Async
public CompletableFuture<Void> handleDataDeletionRequest(String userId, String reason) {
try {
// Find all data associated with user
List<SocialPost> userPosts = socialPostRepository.findByAuthorIdHash(
hashService.hashUserId(userId)
);
List<QueryHistory> userQueries = queryHistoryRepository.findByUserId(userId);
// Delete user data
socialPostRepository.deleteAll(userPosts);
queryHistoryRepository.deleteAll(userQueries);
// Log deletion
auditService.logDataDeletion(userId, reason, userPosts.size() + userQueries.size());
// Notify user of completion
notificationService.sendDeletionConfirmation(userId);
} catch (Exception e) {
log.error("Failed to process data deletion request for user: {}", userId, e);
notificationService.sendDeletionError(userId);
}
return CompletableFuture.completedFuture(null);
}
public DataExportPackage exportUserData(String userId) {
// Collect all user data
UserProfile profile = userRepository.findById(userId).orElse(null);
List<QueryHistory> queries = queryHistoryRepository.findByUserId(userId);
List<AuditLog> auditLogs = auditLogRepository.findByUserId(userId);
// Create export package
return DataExportPackage.builder()
.profile(profile)
.queryHistory(queries)
.auditHistory(auditLogs)
.exportDate(LocalDateTime.now())
.build();
}
}
9. Scalability & Future Features
Horizontal Scaling Strategy
Auto-scaling Configuration:
# Kubernetes Horizontal Pod Autoscaler
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: ingestion-service-hpa
namespace: sentinelbert
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: ingestion-service
minReplicas: 3
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
- type: Pods
pods:
metric:
name: kafka_consumer_lag
target:
type: AverageValue
averageValue: "100"
---
# Vertical Pod Autoscaler for NLP Service
apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
name: nlp-service-vpa
namespace: sentinelbert
spec:
targetRef:
apiVersion: apps/v1
kind: Deployment
name: nlp-service
updatePolicy:
updateMode: "Auto"
resourcePolicy:
containerPolicies:
- containerName: nlp
maxAllowed:
cpu: 8
memory: 16Gi
minAllowed:
cpu: 2
memory: 4Gi
Database Scaling:
-- PostgreSQL Partitioning Strategy
CREATE TABLE social_posts_y2024m01 PARTITION OF social_posts
FOR VALUES FROM ('2024-01-01') TO ('2024-02-01');
CREATE TABLE social_posts_y2024m02 PARTITION OF social_posts
FOR VALUES FROM ('2024-02-01') TO ('2024-03-01');
-- Read Replicas Configuration
CREATE PUBLICATION social_posts_pub FOR TABLE social_posts;
-- Automated partition management
CREATE OR REPLACE FUNCTION create_monthly_partitions()
RETURNS void AS $$
DECLARE
start_date date;
end_date date;
partition_name text;
BEGIN
start_date := date_trunc('month', CURRENT_DATE + interval '1 month');
end_date := start_date + interval '1 month';
partition_name := 'social_posts_y' || to_char(start_date, 'YYYY') || 'm' || to_char(start_date, 'MM');
EXECUTE format('CREATE TABLE %I PARTITION OF social_posts FOR VALUES FROM (%L) TO (%L)',
partition_name, start_date, end_date);
END;
$$ LANGUAGE plpgsql;
-- Schedule partition creation
SELECT cron.schedule('create-partitions', '0 0 1 * *', 'SELECT create_monthly_partitions();');
Performance Optimization
Caching Strategy:
@Configuration
@EnableCaching
public class CacheConfig {
@Bean
public CacheManager cacheManager() {
RedisCacheManager.Builder builder = RedisCacheManager
.RedisCacheManagerBuilder
.fromConnectionFactory(redisConnectionFactory())
.cacheDefaults(cacheConfiguration());
return builder.build();
}
private RedisCacheConfiguration cacheConfiguration() {
return RedisCacheConfiguration.defaultCacheConfig()
.entryTtl(Duration.ofMinutes(30))
.serializeKeysWith(RedisSerializationContext.SerializationPair
.fromSerializer(new StringRedisSerializer()))
.serializeValuesWith(RedisSerializationContext.SerializationPair
.fromSerializer(new GenericJackson2JsonRedisSerializer()));
}
// Multi-level caching
@Bean
public CacheManager multiLevelCacheManager() {
CompositeCacheManager cacheManager = new CompositeCacheManager();
// L1 Cache: In-memory (Caffeine)
CaffeineCacheManager caffeineCacheManager = new CaffeineCacheManager();
caffeineCacheManager.setCaffeine(Caffeine.newBuilder()
.maximumSize(10000)
.expireAfterWrite(5, TimeUnit.MINUTES));
// L2 Cache: Redis
RedisCacheManager redisCacheManager = RedisCacheManager
.builder(redisConnectionFactory())
.cacheDefaults(cacheConfiguration())
.build();
cacheManager.setCacheManagers(Arrays.asList(
caffeineCacheManager,
redisCacheManager
));
return cacheManager;
}
}
@Service
public class QueryCacheService {
@Cacheable(value = "search-results", key = "#request.hashCode()")
public SearchResults getCachedSearchResults(SearchRequest request) {
return performSearch(request);
}
@Cacheable(value = "sentiment-analysis", key = "#postId")
public SentimentAnalysis getCachedSentimentAnalysis(String postId) {
return performSentimentAnalysis(postId);
}
@CacheEvict(value = "search-results", allEntries = true)
@Scheduled(fixedRate = 3600000) // Clear cache every hour
public void clearSearchCache() {
log.info("Clearing search results cache");
}
}
Future Feature Roadmap
Phase 1: Enhanced Media Analysis (6 months)
# Image Sentiment Analysis
class ImageSentimentAnalyzer:
def __init__(self):
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
self.emotion_classifier = pipeline("image-classification",
model="j-hartmann/emotion-english-distilroberta-base")
def analyze_image_sentiment(self, image_url: str) -> Dict:
# Download and process image
image = self.download_image(image_url)
# CLIP-based sentiment analysis
text_queries = [
"a happy positive image",
"a sad negative image",
"a neutral image",
"an angry aggressive image"
]
inputs = self.clip_processor(
text=text_queries,
images=image,
return_tensors="pt",
padding=True
)
outputs = self.clip_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
# Face emotion detection
faces = self.detect_faces(image)
face_emotions = []
for face in faces:
emotion = self.emotion_classifier(face)
face_emotions.append(emotion)
return {
'overall_sentiment': {
'positive': probs[0][0].item(),
'negative': probs[0][1].item(),
'neutral': probs[0][2].item(),
'aggressive': probs[0][3].item()
},
'face_emotions': face_emotions,
'confidence': float(torch.max(probs).item())
}
# Video Analysis Pipeline
class VideoSentimentAnalyzer:
def __init__(self):
self.audio_analyzer = AudioSentimentAnalyzer()
self.image_analyzer = ImageSentimentAnalyzer()
self.text_analyzer = SentinelBERTModel()
async def analyze_video_sentiment(self, video_url: str) -> Dict:
# Extract components
audio_path = await self.extract_audio(video_url)
frames = await self.extract_frames(video_url, interval=1.0)
transcript = await self.extract_transcript(audio_path)
# Parallel analysis
tasks = [
self.audio_analyzer.analyze(audio_path),
self.analyze_frames(frames),
self.text_analyzer.analyze(transcript)
]
audio_sentiment, visual_sentiment, text_sentiment = await asyncio.gather(*tasks)
# Weighted combination
combined_sentiment = self.combine_multimodal_sentiment(
audio_sentiment, visual_sentiment, text_sentiment
)
return {
'combined_sentiment': combined_sentiment,
'audio_sentiment': audio_sentiment,
'visual_sentiment': visual_sentiment,
'text_sentiment': text_sentiment,
'temporal_analysis': self.analyze_temporal_patterns(frames, transcript)
}
Phase 2: Predictive Analytics (12 months)
# Trend Prediction Model
class TrendPredictionModel:
def __init__(self):
self.lstm_model = self.build_lstm_model()
self.feature_extractor = TrendFeatureExtractor()
def build_lstm_model(self):
model = Sequential([
LSTM(128, return_sequences=True, input_shape=(24, 50)), # 24 hours, 50 features
Dropout(0.2),
LSTM(64, return_sequences=True),
Dropout(0.2),
LSTM(32),
Dense(16, activation='relu'),
Dense(1, activation='sigmoid') # Probability of going viral
])
model.compile(
optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy', 'precision', 'recall']
)
return model
def predict_viral_potential(self, content_data: Dict) -> Dict:
# Extract features
features = self.feature_extractor.extract_features(content_data)
# Predict viral probability
viral_prob = self.lstm_model.predict(features.reshape(1, 24, 50))[0][0]
# Predict peak time
peak_time = self.predict_peak_time(features)
# Predict reach
estimated_reach = self.predict_reach(features, viral_prob)
return {
'viral_probability': float(viral_prob),
'predicted_peak_time': peak_time,
'estimated_reach': estimated_reach,
'confidence_interval': self.calculate_confidence_interval(features),
'key_factors': self.identify_key_factors(features)
}
# Real-time Alert System
class AlertSystem:
def __init__(self):
self.alert_rules = self.load_alert_rules()
self.notification_service = NotificationService()
async def monitor_trends(self):
while True:
current_trends = await self.get_current_trends()
for trend in current_trends:
alerts = self.evaluate_alerts(trend)
for alert in alerts:
await self.send_alert(alert)
await asyncio.sleep(60) # Check every minute
def evaluate_alerts(self, trend: Dict) -> List[Alert]:
alerts = []
# Viral content alert
if trend['viral_probability'] > 0.8:
alerts.append(Alert(
type='VIRAL_CONTENT',
severity='HIGH',
message=f"Content likely to go viral: {trend['content_preview']}",
data=trend
))
# Sentiment shift alert
if abs(trend['sentiment_change']) > 0.5:
alerts.append(Alert(
type='SENTIMENT_SHIFT',
severity='MEDIUM',
message=f"Significant sentiment shift detected: {trend['sentiment_change']}",
data=trend
))
# Coordinated behavior alert
if trend['coordination_score'] > 0.7:
alerts.append(Alert(
type='COORDINATED_BEHAVIOR',
severity='HIGH',
message=f"Potential coordinated behavior detected",
data=trend
))
return alerts
Phase 3: Advanced Analytics (18 months)
# Network Analysis and Community Detection
class SocialNetworkAnalyzer:
def __init__(self):
self.graph = nx.Graph()
self.community_detector = CommunityDetector()
def build_interaction_network(self, posts: List[SocialPost]) -> nx.Graph:
# Build graph from interactions
for post in posts:
author = post.author_id
# Add nodes
self.graph.add_node(author, **post.author_metadata)
# Add edges for interactions
for interaction in post.interactions:
if interaction.type in ['reply', 'retweet', 'mention']:
self.graph.add_edge(
author,
interaction.target_user,
weight=interaction.strength,
type=interaction.type
)
return self.graph
def detect_influence_networks(self) -> Dict:
# Community detection
communities = self.community_detector.detect_communities(self.graph)
# Influence scoring
influence_scores = nx.eigenvector_centrality(self.graph)
betweenness_scores = nx.betweenness_centrality(self.graph)
# Bridge detection (users connecting different communities)
bridges = self.detect_bridges(communities)
return {
'communities': communities,
'influence_scores': influence_scores,
'betweenness_scores': betweenness_scores,
'bridge_users': bridges,
'network_metrics': self.calculate_network_metrics()
}
def analyze_information_flow(self, content_id: str) -> Dict:
# Trace how content spreads through the network
propagation_path = self.trace_content_propagation(content_id)
# Calculate spread velocity
spread_velocity = self.calculate_spread_velocity(propagation_path)
# Identify amplification points
amplification_points = self.identify_amplification_points(propagation_path)
return {
'propagation_path': propagation_path,
'spread_velocity': spread_velocity,
'amplification_points': amplification_points,
'reach_prediction': self.predict_final_reach(propagation_path)
}
# Advanced Behavioral Pattern Recognition
class AdvancedBehaviorAnalyzer:
def __init__(self):
self.anomaly_detector = IsolationForest(contamination=0.1)
self.sequence_analyzer = SequenceAnalyzer()
def detect_sophisticated_patterns(self, user_data: Dict) -> Dict:
patterns = {}
# Temporal pattern analysis
temporal_patterns = self.analyze_temporal_patterns(user_data['posts'])
patterns['temporal'] = temporal_patterns
# Language evolution analysis
language_evolution = self.analyze_language_evolution(user_data['posts'])
patterns['language_evolution'] = language_evolution
# Cross-platform behavior correlation
cross_platform = self.analyze_cross_platform_behavior(user_data)
patterns['cross_platform'] = cross_platform
# Anomaly detection
anomalies = self.detect_behavioral_anomalies(user_data)
patterns['anomalies'] = anomalies
return patterns
def analyze_temporal_patterns(self, posts: List[Dict]) -> Dict:
# Extract posting times
posting_times = [post['timestamp'] for post in posts]
# Analyze patterns
hourly_distribution = self.calculate_hourly_distribution(posting_times)
weekly_pattern = self.calculate_weekly_pattern(posting_times)
burst_periods = self.detect_burst_periods(posting_times)
# Detect automation indicators
automation_score = self.calculate_automation_score(posting_times)
return {
'hourly_distribution': hourly_distribution,
'weekly_pattern': weekly_pattern,
'burst_periods': burst_periods,
'automation_score': automation_score,
'regularity_index': self.calculate_regularity_index(posting_times)
}
System Monitoring & Observability
Comprehensive Monitoring Stack:
# Prometheus Configuration
global:
scrape_interval: 15s
evaluation_interval: 15s
rule_files:
- "sentinelbert_rules.yml"
scrape_configs:
- job_name: 'sentinelbert-ingestion'
static_configs:
- targets: ['ingestion-service:8080']
metrics_path: /actuator/prometheus
- job_name: 'sentinelbert-nlp'
static_configs:
- targets: ['nlp-service:8000']
metrics_path: /metrics
- job_name: 'sentinelbert-backend'
static_configs:
- targets: ['backend-service:8080']
metrics_path: /actuator/prometheus
alerting:
alertmanagers:
- static_configs:
- targets:
- alertmanager:9093
# Custom Alerting Rules
groups:
- name: sentinelbert.rules
rules:
- alert: HighIngestionLatency
expr: histogram_quantile(0.95, rate(ingestion_request_duration_seconds_bucket[5m])) > 2
for: 2m
labels:
severity: warning
annotations:
summary: "High ingestion latency detected"
description: "95th percentile latency is {{ $value }}s"
- alert: NLPServiceDown
expr: up{job="sentinelbert-nlp"} == 0
for: 1m
labels:
severity: critical
annotations:
summary: "NLP service is down"
description: "NLP service has been down for more than 1 minute"
- alert: DatabaseConnectionPoolExhausted
expr: hikaricp_connections_active / hikaricp_connections_max > 0.9
for: 2m
labels:
severity: warning
annotations:
summary: "Database connection pool nearly exhausted"
description: "Connection pool usage is {{ $value | humanizePercentage }}"
Custom Metrics Collection:
@Component
public class SentinelBERTMetrics {
private final Counter searchRequestsTotal;
private final Timer searchRequestDuration;
private final Gauge activeQueries;
private final Counter sentimentAnalysisTotal;
private final Histogram influenceScoreDistribution;
public SentinelBERTMetrics(MeterRegistry meterRegistry) {
this.searchRequestsTotal = Counter.builder("sentinelbert_search_requests_total")
.description("Total number of search requests")
.tag("status", "success")
.register(meterRegistry);
this.searchRequestDuration = Timer.builder("sentinelbert_search_duration_seconds")
.description("Search request duration")
.register(meterRegistry);
this.activeQueries = Gauge.builder("sentinelbert_active_queries")
.description("Number of currently active queries")
.register(meterRegistry, this, SentinelBERTMetrics::getActiveQueryCount);
this.sentimentAnalysisTotal = Counter.builder("sentinelbert_sentiment_analysis_total")
.description("Total sentiment analyses performed")
.register(meterRegistry);
this.influenceScoreDistribution = Histogram.builder("sentinelbert_influence_score")
.description("Distribution of influence scores")
.buckets(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)
.register(meterRegistry);
}
public void recordSearchRequest(String status, Duration duration) {
searchRequestsTotal.increment(Tags.of("status", status));
searchRequestDuration.record(duration);
}
public void recordSentimentAnalysis(double sentimentScore) {
sentimentAnalysisTotal.increment();
}
public void recordInfluenceScore(double score) {
influenceScoreDistribution.record(score);
}
private double getActiveQueryCount() {
return queryService.getActiveQueryCount();
}
}
This comprehensive system design provides a robust, scalable, and secure platform for multi-platform sentiment and behavioral pattern analysis. The architecture leverages modern technologies and best practices to deliver real-time insights while maintaining the highest standards of security and privacy required for law enforcement applications.